Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 87(24): e0138021, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34586912

RESUMO

The production of specialized metabolites by Streptomyces bacteria is usually temporally regulated. This regulation is complex and frequently involves both global and pathway-specific mechanisms. Streptomyces ambofaciens ATCC23877 produces several specialized metabolites, including spiramycins, stambomycins, kinamycins and congocidine. The production of the first three molecules has been shown to be controlled by one or several cluster-situated transcriptional regulators. However, nothing is known regarding the regulation of congocidine biosynthesis. Congocidine (netropsin) belongs to the family of pyrrolamide metabolites, which also includes distamycin and anthelvencins. Most pyrrolamides bind into the minor groove of DNA, specifically in A/T-rich regions, which gives them numerous biological activities, such as antimicrobial and antitumoral activities. We previously reported the characterization of the pyrrolamide biosynthetic gene clusters of congocidine (cgc) in S. ambofaciens ATCC23877, distamycin (dst) in Streptomyces netropsis DSM40846, and anthelvencins (ant) in Streptomyces venezuelae ATCC14583. The three gene clusters contain a gene encoding a putative transcriptional regulator, cgc1, dst1, and ant1, respectively. Cgc1, Dst1, and Ant1 present a high percentage of amino acid sequence similarity. We demonstrate here that Cgc1, an atypical orphan response regulator, activates the transcription of all cgc genes in the stationary phase of S. ambofaciens growth. We also show that the cgc cluster is constituted of eight main transcriptional units. Finally, we show that congocidine induces the expression of the transcriptional regulator Cgc1 and of the operon containing the resistance genes (cgc20 and cgc21, coding for an ABC transporter), and propose a model for the transcriptional regulation of the cgc gene cluster. IMPORTANCE Understanding the mechanisms of regulation of specialized metabolite production can have important implications both at the level of specialized metabolism study (expression of silent gene clusters) and at the biotechnological level (increase of the production of a metabolite of interest). We report here a study on the regulation of the biosynthesis of a metabolite from the pyrrolamide family, congocidine. We show that congocidine biosynthesis and resistance are controlled by Cgc1, a cluster-situated regulator. As the gene clusters directing the biosynthesis of the pyrrolamides distamycin and anthelvencin encode a homolog of Cgc1, our findings may be relevant for the biosynthesis of other pyrrolamides. In addition, our results reveal a new type of feed-forward induction mechanism, in which congocidine induces its own biosynthesis through the induction of the transcription of cgc1.


Assuntos
Regulação Bacteriana da Expressão Gênica , Netropsina , Streptomyces , Distamicinas , Genes Bacterianos , Família Multigênica , Netropsina/biossíntese , Streptomyces/genética , Streptomyces/metabolismo
2.
Nat Prod Rep ; 37(3): 355-379, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31593192

RESUMO

Covering: 1990 to 2019 Many medicinally-relevant compounds are derived from non-ribosomal peptide synthetase (NRPS) products. Type I NRPSs are organized into large modular complexes, while type II NRPS systems contain standalone or minimal domains that often encompass specialized tailoring enzymes that produce bioactive metabolites. Protein-protein interactions and communication between the type II biosynthetic machinery and various downstream pathways are critical for efficient metabolite production. Importantly, the architecture of type II NRPS proteins makes them ideal targets for combinatorial biosynthesis and metabolic engineering. Future investigations exploring the molecular basis or protein-protein recognition in type II NRPS pathways will guide these engineering efforts. In this review, we consolidate the broad range of NRPS systems containing type II proteins and focus on structural investigations, enzymatic mechanisms, and protein-protein interactions important to unraveling pathways that produce unique metabolites, including dehydrogenated prolines, substituted benzoic acids, substituted amino acids, and cyclopropanes.


Assuntos
Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Ácido Benzoico/química , Ácido Benzoico/metabolismo , Ciclopropanos/química , Ciclopropanos/metabolismo , Hidroxilação , Lactamas/metabolismo , Macrolídeos/metabolismo , Netropsina/biossíntese , Peptídeo Sintases/genética , Prolina/metabolismo , Mapas de Interação de Proteínas , Pirróis/química , Pirróis/metabolismo , Tiazóis/metabolismo , Tionas/metabolismo
3.
PLoS One ; 9(6): e99077, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24901640

RESUMO

In biosynthesis of natural products, potential intermediates or analogs of a particular compound in the crude extracts are commonly overlooked in routine assays due to their low concentration, limited structural information, or because of their insignificant bio-activities. This may lead into an incomplete and even an incorrect biosynthetic pathway for the target molecule. Here we applied multiple compound mining approaches, including genome scanning and precursor ion scan-directed mass spectrometry, to identify potential pyrrolamide compounds in the fermentation culture of Streptomyces netropsis. Several novel congocidine and distamycin analogs were thus detected and characterized. A more reasonable route for the biosynthesis of pyrrolamides was proposed based on the structures of these newly discovered compounds, as well as the functional characterization of several key biosynthetic genes of pyrrolamides. Collectively, our results implied an unusual "iterative strategy" underlying the pyrrole polymerization in the biosynthesis of pyrrolamide antibiotics.


Assuntos
Amidas/metabolismo , Amidoidrolases/metabolismo , Antibacterianos/metabolismo , Polímeros/metabolismo , Pirróis/metabolismo , Streptomyces/metabolismo , Amidas/química , Antibacterianos/química , Biocatálise , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Distamicinas/biossíntese , Distamicinas/química , Família Multigênica , Netropsina/biossíntese , Netropsina/química , Polímeros/química , Pirróis/química , Streptomyces/genética , Espectrometria de Massas em Tandem
4.
Chem Biol ; 16(4): 421-31, 2009 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-19389628

RESUMO

Congocidine (netropsin) is a pyrrole-amide (oligopyrrole, oligopeptide) antibiotic produced by Streptomyces ambofaciens. We have identified, in the right terminal region of the S. ambofaciens chromosome, the gene cluster that directs congocidine biosynthesis. Heterologous expression of the cluster and in-frame deletions of 8 of the 22 genes confirm the involvement of this cluster in congocidine biosynthesis. Nine genes can be assigned specific functions in regulation, resistance, or congocidine assembly. In contrast, the biosynthetic origin of the precursors cannot be easily inferred from in silico analyses. Congocidine is assembled by a nonribosomal peptide synthetase (NRPS) constituted of a free-standing module and several single-domain proteins encoded by four genes. The iterative use of its unique adenylation domain, the utilization of guanidinoacetyl-CoA as a substrate by a condensation domain, and the control of 4-aminopyrrole-2-carboxylate polymerization constitute the most original features of this NRPS.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Netropsina/biossíntese , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Streptomyces/enzimologia , Acetilcoenzima A/metabolismo , Proteínas de Bactérias/química , Regulação Bacteriana da Expressão Gênica , Família Multigênica , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeo Sintases/química , Estrutura Terciária de Proteína
5.
J Antibiot (Tokyo) ; 61(3): 158-63, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18503194

RESUMO

A family of three novel aminofuran antibiotics named as proximicins was isolated from the marine Verrucosispora strain MG-37. Proximicin A was detected in parallel in the marine abyssomicin producer "Verrucosispora maris" AB-18-032. The characteristic structural element of proximicins is 4-amino-furan-2-carboxylic acid, a hitherto unknown gamma-amino acid. Proximicins show a weak antibacterial activity but a strong cytostatic effect to various human tumor cell lines.


Assuntos
Actinobacteria/metabolismo , Antibacterianos/farmacologia , Antibióticos Antineoplásicos/farmacologia , Netropsina/análogos & derivados , Actinobacteria/química , Actinobacteria/classificação , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Antibióticos Antineoplásicos/biossíntese , Antibióticos Antineoplásicos/isolamento & purificação , Bactérias/efeitos dos fármacos , Linhagem Celular Tumoral , Fenômenos Químicos , Físico-Química , Cromatografia Líquida de Alta Pressão , Fermentação , Humanos , Testes de Sensibilidade Microbiana , Netropsina/biossíntese , Netropsina/isolamento & purificação , Netropsina/farmacologia , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...